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Abstract The superior colliculus is a hub for multisen-

sory integration necessary for visuo-spatial orientation,

control of gaze movements and attention. The multiple

functions of the superior colliculus have prompted

hypotheses about its involvement in neuropsychiatric

conditions, but to date, this topic has not been addressed

experimentally. We describe experiments on genetically

modified mice, the Isl2-EphA3 knock-in line, that show a

well-characterized duplication of the retino-collicular and

cortico-collicular axonal projections leading to hyperstim-

ulation of the superior colliculus. To explore the functional

impact of collicular hyperstimulation, we compared the

performance of homozygous knock-in, heterozygous

knock-in and wild-type mice in several behavioral tasks

requiring collicular activity. The light/dark box test and

Go/No-Go conditioning task revealed that homozygous

mutant mice exhibit defective response inhibition, a form

of impulsivity. This defect was specific to attention as other

tests showed no differences in visually driven behavior,

motivation, visuo-spatial learning and sensorimotor abili-

ties among the different groups of mice. Monoamine

quantification and gene expression profiling demonstrated a

specific enrichment of noradrenaline only in the superficial

layers of the superior colliculus of Isl2-EphA3 knock-in

mice, where the retinotopy is duplicated, whereas transcript

levels of receptors, transporters and metabolic enzymes of

the monoaminergic pathway were not affected. We dem-

onstrate that the defect in response inhibition is a conse-

quence of noradrenaline imbalance in the superficial layers

of the superior colliculus caused by retinotopic map

duplication. Our results suggest that structural abnormali-

ties in the superior colliculus can cause defective response

inhibition, a key feature of attention-deficit disorders.
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Introduction

The superior colliculus (SC) is a midbrain structure that

integrates sensory inputs from multiple modalities (Wal-

lace et al. 1993; Holmes and Spence 2005; May 2006) and

plays a central role in visuo-spatial orientation, attention

and sensorimotor processing (Stein 1984; May 2006;

Gandhi and Katnani 2011). Defects in SC function have
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been associated with a number of neuropathological and

neuropsychiatric disorders including epilepsy (Ross and

Coleman 2000), schizophrenia (Fuentes 2001) and autism

spectrum disorder (ASD) (Kleinhans et al. 2011). Recently,

collicular hyperstimulation has been proposed to underlie

attention-deficit/hyperactivity disorder (ADHD) symptoms,

especially the impulsivity and distractibility associated

with the disorder (Overton 2008; Miller 2009; Dommett

et al. 2009). However, direct experimental evidence for

such a link remains elusive.

The SC presents a particular feature, namely the topo-

graphic organization of its sensory inputs (Sperry 1963;

Lemke and Reber 2005; May 2006). Axons of retinal

ganglion cells (RGCs) project to the superficial layers of

the SC along spatial axes reflecting their position along

corresponding axes in the retina (the retino-collicular map).

Layer V neurons of the V1 cortex also project in a topo-

graphic manner to the superficial layers of the SC, the

cortico-collicular map, which is in register with the retino-

collicular map (May 2006; Triplett et al. 2012). This cre-

ates a topographic representation of the visual field in the

superficial layers of the SC, also called retinotopy. Audi-

tory and somatosensory afferents projecting to deep layers

of the SC are also aligned with the visual maps (Meredith

and Stein 1985; King et al. 1998; May 2006) enhancing

perception of salient stimuli and influencing decision and

overt behavior (Stein et al. 2009).

We took advantage of a specific disruption of the reti-

notopy in the superficial layers of the SC that has been

observed in the Isl2-EphA3 knock-in mice (Fig. 1; Brown

et al. 2000). In this mouse model, the EphA3 tyrosine

kinase receptor, which acts as a guidance molecule during

map formation, is over-expressed by a subset of RGCs.

This leads to a well-characterized duplication of the retino-

collicular and cortico-collicular maps along the anterior–

posterior axis of the SC. Over-expression of the EphA3

receptor neither affects retinal organization and integrity,

nor the topography of collicular somatosensory inputs

Fig. 1 Topographic retino-

collicular projections in WT and

Isl2-EphA3KI animals.

Micrographs illustrate nasal

1,10-dioctadecyl-3,3,3030-
tetramethylindocarbocyanine

perchlorate (Dil) injections in

P8 retinas and the

corresponding termination

zone(s) in the SC. Top an

injection in nasal WT retina

leads to a single caudal

termination zone in the SC.

Middle an injection in a nasal

EphA3KI/? retina leads to two

caudal termination zones in the

SC. Bottom an injection in a

nasal EphA3KI/KI retina leads

to two distant termination zones

in the SC. Scale bars 1 mm
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(Brown et al. 2000; Reber et al. 2004; Triplett et al. 2009;

Bevins et al. 2011; Triplett et al. 2012). The duplicated

visual maps are functional as single visual stimuli trigger

the activation of two distinct areas in the SC (Triplett et al.

2009). Unlike other mouse models that target Eph/ephrin

signaling (Dottori et al. 1998; Feldheim et al. 2000; Feld-

heim 2004), the genetic modification in the Isl2-EphA3

knock-in mice affects only a subset of RGCs and does not

affect other structures in the brain (Brown et al. 2000;

Reber et al. 2004, Thaler et al. 2004).

To determine if hyperstimulation of the SC, due to

duplication of the retinotopic projections, influences col-

licular-related behavior, wild-type (WT), heterozygous

(EphA3KI/?) and homozygous (EphA3KI/KI) Isl2-EphA3KI

mice were subjected to a series of well-established

behavioral tests. As a first approach, we tested general

visual ability (cliff test, optokinetic reflex, Morris water

maze with visible platform) as the effects of disrupted

EphAs gradients in the RGCs and duplicated retinotopy in

the SC on visual perception have never been described

before. We then focused on general sensorimotor (loco-

motor activity, circadian rhythmicity, light/dark box test)

and integrative features (beam walking test) and on col-

licular-related behavior, especially visuo-spatial orientation

and memory (Morris water maze with hidden platform) and

response inhibition (Go/No-Go task). Our results show that

EphA3KI/KI mutant mice exhibit defective response inhi-

bition when compared to WT or EphA3KI/? littermates.

Visual acuity, sensorimotor activity, visuo-spatial learning,

motivation and memory were similar in the different

genotypes. Molecular characterization demonstrated ele-

vated noradrenaline levels in the superficial layers of the

SC in EphA3KI/KI animals where the retinotopy is dupli-

cated. Expression levels of receptors, transporters and

enzymes of the monoaminergic signaling pathway were

similar to WT littermates. Interestingly, these changes

resemble specific symptoms of the adult and predominantly

inattentive-type of ADHD patients (Diamond 2005; Bie-

derman and Faraone 2005).

Materials and methods

Animals

Mice were bred and housed in our mouse facility (Chro-

nobiotron, UMS 3415, CNRS, Strasbourg) and tested

during the light phase (ZT2–ZT10) of their light/dark cycle

except for indicated experiments. All procedures were in

accordance with national (council directive 87/848, Octo-

ber 1987) and European community (2010/63/EU) guide-

lines. Official agreement numbers for animal

experimentation were 67-292 for CM, 67-215 for J-CC and

67-358 for KG, AG was under their responsibility. Mice

were genotyped by PCR of genomic DNA from tail biop-

sies as described previously (Reber et al. 2004). Four- to

seven-month-old male littermates of each genotype

(EphA3KI/KI, EphA3KI/? and WT) on a mixed genetic

background (C57/Bl6 9 129Sv/J) were subjected to

behavioral tests and molecular analyses. Standard labora-

tory rodent food and water were available ad libitum

throughout all experiments, except for the Go/No-Go task,

for which all mice were kept at 85 % of their free-feeding

weight.

Behavioral tests

Three distinct cohorts of 4- to 7-month-old WT, EphA3KI/?

and EphA3KI/KI males littermates were characterized using

fixed sequences of test ranging as much as possible from

the least to the most invasive test. Inter-test intervals (ITI)

varied along the sequences to limit order effect. The first

cohort of 4- to 7-month-old males littermates (n = 6–9 per

group) was first tested in the light/dark box test (Boeuf

et al. 2009) (ITI 5 days) and then only in the Go/No-Go

task (Meziane et al. 1993). The second cohort of 4- to

7-month-old males littermates (n = 7 per group) was

dedicated to sensorimotor evaluations. They were first

tested for circadian wheel running activity (Mendoza et al.

2008) and general locomotor activity (Yassine et al. 2013)

(ITI 15 days) followed by the Morris water maze paradigm

(Moreau et al. 2008) (ITI 15 days), the beam walking test

(Moreau et al. 2008) (ITI 3 days) and the visual cliff test

(Gibson and Walk 1960) (ITI 21 days). The optokinetic

reflex (Douglas et al. 2005) was studied on a third cohort of

4-month-old (n = 7–10) male littermates. Detailed

descriptions can be found in Online resource 1.

Molecular analysis

Transcript levels were analyzed by semi-quantitative PCR

and monoamine levels were measured by high-pressure

liquid chromatography as described in the Online resource

1.

Statistical analysis

Unless otherwise indicated, data were analyzed by analysis

of variance with repeated measure factors to study inter-

actions between genotype and side, trial, day, 15-min

block, quadrant, runway (rANOVA). All statistical out-

comes were confirmed by a Kruskal–Wallis test applied on

the light–dark single factors or within each repeated mea-

sure, as group sizes in behavioral studies were relatively

small. When required, post hoc analyses were performed

with the Newman–Keuls (NK) multi-comparison test
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(Statistica 8.0; Statsoft, Inc., Tulsa, OK). The time spent in

the goal quadrant of the water maze was compared to the

15-s chance value by means of a t test. The 15-s chance

value corresponds to the time spent for random search in

four quadrants during the 60 s probe test. All behavioral

data are expressed as mean ± standard error of the mean

(SEM). HPLC and qPCR data were analyzed using the

non-parametric Kruskal–Wallis (KW) test. All expression

data are represented using boxplots (min, q1, median, q3,

max).

Results

The functional contribution of the SC in specific behavior

has been investigated in a variety of experiments, including

electrophysiological recording, inactivation and lesion

approaches (Binns 1999; Huberman and Niell 2011) but

little has been done at a more integrated level in animal

models with congenital defects.

Visual acuity

We first asked whether the modified collicular retinotopy

affects visual acuity using the visual cliff test, which

measures visual depth perception in rodents. Mice from all

three experimental groups spent significantly more time on

the opaque side compared to the cliff side (side:

F1,18 = 10.15, p = 0.005; Fig. 2a) and stepped earlier

onto the opaque side than onto the cliff side (side:

F1,18 = 16.61, p \ 0.001; Fig. 2b) indicating normal

visual perception. There was no significant difference

between genotypes for the latency to step down and the

time spent on either the checkered side or the cliff side (no

genotype effect or genotype 9 side interaction). We next

tested visual acuity by stimulating and measuring the

optokinetic reflex (OKR). This reflex mediates compensa-

tory head motions elicited by moving full-field visual

stimuli, to maintain a constant image on the retina. Mice

from all three genotypes showed similar threshold values

for the minimum contrast that triggers an OKR at spatial

frequencies ranging from 0.064 to 0.272 cycles/degree

(Fig. 2c). Together, these results indicated normal visual

acuity in EphA3KI/KI and EphA3KI/? mice.

General locomotor activity, sensory motor coordination

and circadian rhythm

We next tested locomotor activity using horizontal cage

activity and wheel running. Mice of each experimental

group showed a similar decrease in locomotor activity over

the course of a 3-h session corresponding to habituation to

the new cage (15-min block: F11,198 = 55.17, p \ 0.0001;

Fig. 3a) and no significant effect of the genotype was

observed in total wheel running activity, all three genotypes

showing normal rhythmic activity (Fig. 4b, Online resource

2). The key role of the SC in the integration of sensorimotor

modalities led us to test sensorimotor coordination. All

three genotypes underwent the beam walking test and

showed similar latencies to leave the start segment

A

B

C

Fig. 2 Visual acuity in Isl2-EphA3 knock-in mice. a In the visual

cliff test, WT, EphA3KI/? and EphA3KI/KI mice spent significantly

more time on the opaque side compared to the cliff side. The three

groups of mice did not differ in terms of mean time (s) spent on the

opaque side and cliff side during the 10 min session. b The latency to

step down toward the opaque side was significantly lowered

compared to the cliff side, but similar in all genotypes. c In the

OKR test, the average contrast sensitivity (threshold contrast as %, y

axis) for spatial frequencies ranging from 0.064 to 0.272 cycles/

degree (x axis) varies similarly in the three groups of mice.

***p \ 0.0001
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(genotype x trial: F6,54 = 0.65, p [ 0.10, not shown) and

to reach the platform, which decreased significantly during

subsequent trials (trial: F3,54 = 16.48, p \ 0.0001;

Fig. 3b). Sensorimotor coordination and latency to leave the

start segment were similar among genotypes. Moreover, we

tested whether the running activity of knock-in mice fol-

lows light-entrained and endogenous circadian patterns. All

three genotypes showed similar running activity in 12 h

light–dark and dark–dark cycles with similar endogenous

period (WT: 23.57 ± 0.26 h, EphA3KI/?: 23.76 ± 0.35 h

and EphA3KI/KI: 23.69 ± 0.26 h; Fig. 4). Together these

results indicate normal locomotor activity, sensory motor

processing and circadian activity in EphA3KI/KI and

EphA3KI/? animals.

Visuo-spatial orientation and memory

We then tested vision and motor skills using the Morris

water maze visible platform test, where mice must locate a

cue at close range, and swim toward it. After 2 days of

habituation, mice were tested for their performance in

reaching a visible platform. Swim speed and distance were

measured in four trials. Swim speed remained stable and

similar for all groups. Swimming distance was similarly

reduced among all groups over the four consecutive trials

(trial: F3,54 = 16.07, p \ 0.0001). No significant differ-

ence was observed among genotypes or genotype 9 trial

interactions (Fig. 5a). Next we used a variant of the Morris

water maze test where the platform is hidden to evaluate

visuo-spatial learning and memory. Here, mice must find

the hidden platform based on distant visual cues outside the

pool. Over the course of the four training days, mice of all

three genotypes showed similar swim speeds and learned

the position of the hidden platform equally well (day:

F3,54 = 20.67, p \ 0.0001; Fig. 5b). No difference was

observed between genotypes, suggesting that EphA3KI/?

and EphA3KI/KI animals are able to learn a task requiring

visuo-spatial orientation abilities. In a probe test performed

24 h later, all mice showed a clear bias toward the target

quadrant where they spent significantly more time than the

15-s chance level (WT: t6 = 6.68, p = 0.0005, EphA3KI/?:

t6 = 4.62, p = 0.004; EphA3KI/KI: t6 = 6.01, p = 0.001;

Fig. 5c). Taken together, these results indicated normal

visuo-spatial orientation, preserved motivation to reach a

visible and hidden platform and intact spatial learning and

memory in EphA3KI/KI and EphA3KI/? mice.

Anxiety, response inhibition

As the behavioral output in several tasks (e.g., visual cliff,

Go/No-Go and Morris water maze) can be modulated by

levels of anxiety, they were determined in the Isl2-EphA3

knock-in mice using the light/dark box test (Crawley

2007). This conflict test evaluates anxiety based on the

tendency of a mouse to explore a novel environment

against the aversive effect of a brightly lit open field (the

light box). We measured both the time spent in the light

box (aversive environment) and the number of attempts to

enter this box (defined as an incomplete body entrance).

Animals from the three genotypes spent a similar amount

of time in the aversive environment (the light box) indi-

cating comparable levels of anxiety (Fig. 6a). In support of

that, habituation times in a novel activity cage and latency

to leave the start segment in the beam walking test, pre-

sented above, did not differ between the three genotypes

further suggesting that the Isl2-EphA3KI animals exhibit

normal levels of anxiety. Surprisingly, EphA3KI/KI and

EphA3KI/? mice made significantly fewer attempts to enter

A

B

Fig. 3 Locomotor activity and sensorimotor coordination in Isl2-

EphA3 knock-in mice. a During the 3-h habituation phase, EphA3KI/

KI and EphA3KI/? mice did not differ from their WT littermates in

terms of exploration of a new environment (expressed as mean

horizontal activity per 15-min block). b EphA3KI/KI mice did not

differ from their WT littermates in terms of mean time per trial to

reach the platform over 4 trials of the beam test. In all three

genotypes, this parameter decreased significantly over consecutive

trials
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the light box (incomplete body entrances) compared to

their WT littermates (attempts: F2,21 = 4.24, p \ 0.05,

NK post hoc: p \ 0.05; Fig. 6b). In other words,

EphA3KI/KI and EphA3KI/? mice were less hesitant and

entered the light box more readily suggesting that they fail

to refrain from exploring an aversive environment. In

addition, EphA3KI/KI and EphA3KI/? mice showed a

decreased latency for complete body entrance into the light

box compared to WT littermates (latency: F2,21 = 3.24,

p = 0.06; Fig. 6c). This provides further evidence that they

did not hesitate to enter an aversive environment. However,

EphA3KI/KI mice showed no increase in time spent in the

light box and no impairment in the visual cliff test, opto-

kinetic reflex and both versions of the water maze in which

performance depends on intact visual abilities (Yassine

et al. 2013). Alternatively, reduced hesitation to enter the

light box could be related to a diminished response inhi-

bition, a key feature of impulsivity (Chamberlain and Sa-

hakian 2007).

To confirm defects in response inhibition of knock-in

mice, we performed a Go/No-Go task. Go/No-Go para-

digms are based on a cue discrimination conditioning and

are commonly used to assess attention and response inhi-

bition, but also learning and memory functions in humans

and mice (Meziane et al. 1993; Aron and Poldrack 2005;

Gubner et al. 2010; Loos et al. 2010). This test required food

restriction, during which the mice were kept at 85 % of their

weight to ensure motivation for food reward. Mice of all

three genotypes showed similar weight loss and motivation

for food during food restriction (not shown) (Meziane et al.

1993). In our version of the task, mice were conditioned to

run successively down two runaways differing in colors,

one color runaway being always baited with food (Go trail)

and the other never baited (No-Go trial). Both EphA3KI/?

and WT littermates progressively learned to discriminate

between the reinforced (Go trials) and non-reinforced (No-

Go trials) runways as indicated by a significant decrease in

running time on Go trials and stable running times on No-

Go trials (Go trials: F2,34 = 18.9, p \ 0.0001; Fig. 7a, b)

as usually observed in this task (Meziane et al. 1993). This

suggested normal learning, motivation and response inhi-

bition in EphA3KI/? and WT mice. Running duration of

EphA3KI/KI animals decreased similarly than WT and

EphA3KI/? littermates on Go trials. Surprisingly, and in

A BFig. 4 Circadian activity in

Isl2-EphA3 knock-in mice. All

three groups of mice showed

similar endogenous periods

after a 15 days of light–dark

(LD) cycle followed by 10 days

of constant darkness (DD)

(a) and similar diurnal and

nocturnal wheel running activity

(b)
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contrast to WT and EphA3KI/?, EphA3KI/KI running times

also significantly decreased on No-Go trials (No-Go trails:

F4,34 = 4.03, p \ 0.01, NK p \ 0.05; Fig. 7a, b) indicat-

ing their failure to refrain themselves from running in the

non-reinforced runway on No-Go trials. Preserved perfor-

mances of the EphA3KI/KI animals on Go trials suggested

intact motivation for food and efficient learning. A

discrimination learning deficit in these mice is unlikely

since amnesic treatments are known to affect essentially Go

running times (Meziane et al. 1993, 1998). In addition, their

performance in the visible and hidden versions of the Morris

water maze as well as in the visual cliff test and optokinetic

reflex suggests that their visual acuity and visuo-spatial

memory are comparable to those of WT and EphA3KI/?

littermates. Taken together, these results further support the

hypothesis of a defective response inhibition in the

EphA3KI/KI animals.

A

B

C

Fig. 5 Visuo-spatial orientation, spatial navigation, learning and

memory in Isl2-EphA3 knock-in mice. a In the visible platform test

of the Morris water maze paradigm, all three groups of mice required

similar mean swimming distances per trial to reach the visible platform

and showed a similar decrease in the swimming distance over

consecutive trials. b During the 4-day-long training period in the

hidden platform test of the Morris water maze paradigm, Isl2-EphA3

knock-in mice and their WT littermates required similar swimming

distances to reach the platform and showed a similar decrease over

consecutive trials. c In the 60-s probe test without platform, mice spent

significantly more time in the target quadrant compared to the mean

time in other quadrants regardless of their genotype. ***p \ 0.0001

A

B

C

Fig. 6 Anxiety-related behavior in Isl2-EpA3 knock-in mice. a In the

light/dark box test, Isl2-EphA3 knock-in mice spent the same amount

of time (s) in the light box as their WT littermates. b EphA3KI/KI

animals showed a significant decrease in the number of attempts to

enter the light box compared to the WT littermates. c EphA3KI/KI

and EphA3KI/? animals showed a tendency to a decreased latency

(s) to enter the light box compared to their WT littermates. *p \ 0.05
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In principle, this defective behavior could be caused by

impaired attention or increased distraction (Barkley 2004).

To test this possibility, we repeated the reinforced Go task,

but added visual (flashing light) and auditory (tone) dis-

tractors. Mice of all genotypes showed significantly

increased running times by reducing their speed in trials

with tones (70 dB tone: F1,18 = 5.48, p \ 0.05; 90 dB

tone: F1,18 = 9.18, p \ 0.01; Fig. 7c) and flash lights

(F1,18 = 92.06, p \ 0.0001; Fig. 7c) compared to non-

distracted trials. Notably, all EphA3KI/KI mice increased

their running times when exposed to a flashing light, (one

mouse stopped to look toward the origin of the stimulus)

although the difference between EphA3KI/KI and WT lit-

termates did not reach statistical significance (Flash

latency: F2,18 = 1.17, p = 0.33; Fig. 7c). These data

indicate that a flashing light and loud tones are effective

distractors during the Go task.

Analysis of regional monoamine levels

The observed defective response inhibition in EphA3KI/KI

mice, corresponding to an ADHD phenotypic feature, could

be induced by abnormal catecholamine levels (van der Kooij

and Glennon 2007; Sontag et al. 2010). To test this possibility,

we determined levels of monoamine neurotransmitters in

distinct areas of the mouse brain, namely the superficial layers

of the superior colliculus (SC), the prefrontal cortex, the

striatum, the parietal cortex and the cerebellum, all involved

in attentional processes and motor control (Himelstein et al.

2000; Aron and Poldrack 2005; Biederman and Faraone

2005; Overton 2008). Levels of dopamine, adrenaline and

serotonin were not significantly different between genotypes

in the five structures studied (Fig. 8; Online resource 2). In

contrast, the levels of noradrenaline were significantly

increased in the superficial layers of the SC of EphA3KI/KI

compared to their EphA3KI/? and WT littermates (KW test

p \ 0.05; Figs. 8a, 9). The increase in noradrenaline in the

superficial layers of the SC prompted us to examine the

expression of receptors, transporters and enzymes that are

involved in monoaminergic metabolism and associated with

attention-deficit diseases (Himelstein et al. 2000; Biederman

and Faraone 2005). All three genotypes showed similar

expression of transporters, metabolic enzymes and down-

stream receptors of dopamine, noradrenaline, adrenaline and

A

C

BFig. 7 Go/No-Go performance

in Isl2-EpA3 knock-in mice.

a Over the three sessions, WT,

EphA3KI/? and EphA3KI/KI

mice reduced their mean

running time per trial in the

reinforced Go trials. b Over the

three sessions, WT and

EphA3KI/? mice show stable

mean running time in the non-

reinforced No-Go trials, as

opposed to EphA3KI/KI

littermates, which also reduced

their running times in No-Go

trials NK *p \ 0.05. c Auditory

(70, 90 dB tone) and visual

(flash light) distractors led to

significant increases in the

running times in Go trials of all

three genotypes. Note that

EphA3KI/KI mice appeared

slightly more sensitive to a

visual distractor than their

littermates. *p \ 0.05;

**p = 0.01; ***p \ 0.0001
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serotonin in the superficial layers of the SC and in other brain

regions (Online resource 2).

Discussion

Our study provides first evidence for specific behavioral

and molecular changes in mice with genetically altered

retinotopy in the superior colliculus and consequently

enhanced visual inputs. In the Go/No-Go task, EphA3KI/KI

mice performed normally on Go trials by increasing their

running speed, but they were completely unable to inhibit

their running response on No-Go trials.

In the light/dark box test, EphA3KI/KI mice entered the

aversive light box more readily than control mice. Alto-

gether, our behavioral tests revealed that EphA3KI/KI mice

exhibit defective response inhibition, a form of impulsivity.

The observation that heterozygous EphA3KI/? mice behave

like WT littermates in the Go/No-Go task suggests that a

partial duplication of the retino-collicular map (Brown et al.

2000) is not sufficient to trigger defective response inhibi-

tion. The observed behavioral changes were remarkably

A

C

E

D

BFig. 8 Monoamine

concentrations in selected brain

regions of Isl2-EphA3 knock-in

mice. Radar-plot representation

of total dopamine, adrenaline,

noradrenaline and serotonin

content (median values, ng/mg

of proteins) in the a superficial

layers of the SC, b prefrontal

cortex, c cerebellum, d striatum

and e parietal cortex. The

noradrenaline content was

significantly increased in

superficial SC layers of

EphA3KI/KI compared to

EphA3KI/? and WT

littermates. *p \ 0.05 KW test.

SC superior colliculus
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specific, as all other paradigms tested, namely vision, visuo-

spatial orientation, sensorimotor function, motivation,

learning and memory as well as exploratory behavior and

anxiety were similar in WT, EphA3KI/? and EphA3KI/KI

mice. Defective response inhibition could be the conse-

quence of enhanced levels of noradrenaline that we detected

in the superficial layers of the SC of EphA3KI/KI mice.

Enhanced noradrenaline levels in the SC could alter the

behavior of the EphA3KI/KI mice by modulating the signal-

to-noise ratio in this structure (Mooney et al. 1990; Tan et al.

1999) and thereby changing its level of activation (Dommett

et al. 2009). In hamsters, in vivo and in vitro studies dem-

onstrated a suppression of collicular neuron response upon

noradrenaline application (Mooney et al. 1990; Tan et al.

1999). In rats, Sato and Kayama reported that iontophoreti-

cally applied noradrenaline exerts an excitatory action,

indicating an increase of the signal-to-noise ratio, in accor-

dance with our hypothesis (Sato and Kayama 1983). Whe-

ther noradrenaline increases or decreases the signal-to-noise

ratio in the superficial layers of the SC is still debated.

However, it clearly affects the processing of salient stimuli in

a context-specific manner (Sato and Kayama 1983; Mooney

et al. 1990; Tan et al. 1999).

The increase in noradrenaline was specific to the super-

ficial layers of the SC, where the retinotopy is duplicated.

Moreover, the increase only concerned noradrenaline,

whereas other monoamines including dopamine, serotonin

and adrenaline showed similar concentrations for all

genotypes and brain regions. The increase in noradrenaline

was not accompanied by changes in transcript levels of

genes involved in monoamine metabolism. Therefore, we

hypothesize that the increase of noradrenaline in the

superficial layers of the SC may be the consequence of the

duplication of the RGCs projections, which are functional,

as shown by optical intrinsic imaging (Triplett et al. 2009).

Previous studies revealed that RGC axons release nor-

adrenaline upon activation (Osborne and Patel 1985).

Alternatively, the increase may come from a duplication of

projections from the locus coeruleus (LC), the major source

of noradrenaline in the brain, to the superficial layers of the

SC (Takemoto et al. 1978; Fritschy et al. 1990). Whether

LC projections to the SC are duplicated is unknown as the

mapping of the LC to the SC is hindered by the small size

and specific sub-nuclei organization of the LC. However, it

appears possible given that cortico-collicular projections

are also duplicated in the EphA3KI/KI animals although

projecting V1 neurons do not express ectopic EphA3

(Triplett et al. 2009). RGCs project to different brains areas,

including lateral geniculate nucleus (LGN) and non-image

forming structures such as the suprachiasmatic nucleus

(SCN), the medial tegmental nucleus (MTN) or the olivary

pretectal nucleus (OPN). Triplett and colleagues show no

targeting defects in the LGN of Isl2-EphA3 animals

(Triplett et al. 2009). The same group recently demon-

strated that among 1 % of RGCs projecting to the SCN

(the intrinsically photoreceptive RGCs—ipRGCs), 3 % are

A B

C D

Fig. 9 Monoamine content in the SC of Isl2-EphA3 knock-in mice.

Boxplot representation (min, q1, median, q3, max) of total a dopa-

mine, b adrenaline, c noradrenaline and d serotonin content (in ng/mg

of proteins) in the superficial layers of the superior colliculus (SC)

showing significant increase in noradrenaline in EphA3KI/KI animals

compared to EphA3KI/? and WT littermates. *p \ 0.05 KW test
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Isl2-positive and that these SCN-targeting Isl2-positive

RGCs only transiently innervate the SCN during the

development (Triplett et al. 2014). MTN and OPN also

show innervation by Isl2-positive RGCs at early postnatal

stages which is pruned by P6 (Triplett et al. 2014). The

behavioral and molecular changes in EphA3KI/KI mice

including defective response inhibition and noradrenaline

enrichment in the superficial layers of the SC phenocopy

some of the symptoms observed in ADHD patients, spe-

cifically the adult and predominantly inattentive-type

(Barkley 1997; Aron and Poldrack 2005; Biederman and

Faraone 2005; Bekker et al. 2005; Fisher et al. 2011;

American Psychiatric Association 2013). These symptoms

are also main features of Autism Spectrum Disorder (ASD)

(Murray 2010). Our findings support the hypothesis that

adult ADHD patients present collicular hyperstimulation

leading to the appearance of impulsivity and attentional

impairments (Overton 2008; Miller 2009; Dommett et al.

2009). Moreover, they are in line with the idea that dys-

regulation of the central noradrenergic systems contributes

to the pathophysiology of ADHD (Biederman and Spencer

1999). Currently, progress on the etiology, diagnosis and

treatment of ADHD is hindered by the limited number of

experimental models. Most of the available rodent models

are based on impaired monoaminergic transmission (van der

Kooij and Glennon 2007; Sontag et al. 2010) and present

some of the phenotypic features of ADHD patients. Our

findings suggest that EphA3KI/KI animals may serve as a new

model to study ADHD pathology and complement the lim-

ited arsenal of ADHD/ADD-related experimental approaches

to understand and treat these neuropsychologic diseases.
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Service 3415, Centre National de la Recherche Scientifique, Stras-

bourg) for animal care and Pedwin Pallet for help with recordings of

the optokinetic reflex. This work was supported by Partner University

Fund (M.R.), Centre National de la Recherche Scientifique (CNRS)
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